Clinical Applications of Wavefront Refraction
نویسندگان
چکیده
PURPOSE To determine normative reference ranges for higher-order wavefront error (HO-WFE), compare these values with those in common ocular pathologies, and evaluate treatments. METHODS A review of 17 major studies on HO-WFE was made, involving data for a total of 31,605 subjects. The upper limit of the 95% confidence interval (CI) for HO-WFE was calculated from the most comprehensive of these studies using normal healthy patients aged 20 to 80 years. There were no studies identified using the natural pupil size for subjects, and for this reason, the HO-WFE was tabulated for pupil diameters of 3 to 7 mm. Effects of keratoconus, pterygium, cataract, and dry eye on HO-WFE were reviewed and treatment efficacy was considered. RESULTS The calculated upper limit of the 95% CI for HO-WFE in a healthy normal 35-year-old patient with a mesopic pupil diameter of 6 mm would be 0.471 μm (471 nm) root-mean-square or less. Although the normal HO-WFE increases with age for a given pupil size, it is not yet completely clear how the concurrent influence of age-related pupillary miosis affects these findings. Abnormal ocular conditions such as keratoconus can induce a large HO-WFE, often in excess of 3.0 μm, particularly attributed to coma. For pterygium or cortical cataract, a combination of coma and trefoil was more commonly induced. Nuclear cataract can induce a negative spherical HO-WFE, usually in excess of 1.0 μm. CONCLUSIONS The upper limit of the 95% CI for HO-WFE root-mean-square is about 0.5 μm with normal physiological pupil sizes. With ocular pathologies, HO-WFE can be in excess of 1.0 μm, although many devices and therapeutic and surgical treatments are reported to be highly effective at minimizing HO-WFE. More accurate normative reference ranges for HO-WFE will require future studies using the subjects' natural pupil size.
منابع مشابه
New Objective Refraction Metric Based on Sphere Fitting to the Wavefront
Purpose To develop an objective refraction formula based on the ocular wavefront error (WFE) expressed in terms of Zernike coefficients and pupil radius, which would be an accurate predictor of subjective spherical equivalent (SE) for different pupil sizes. Methods A sphere is fitted to the ocular wavefront at the center and at a variable distance, t. The optimal fitting distance, topt, is ob...
متن کاملThe precision of wavefront refraction compared to subjective refraction and autorefraction.
PURPOSE To determine the precision (repeatability) of several methods of calculating refraction from higher-order wavefront aberration data and to compare these wavefront refractions with lower-order (LO) wavefront refraction, subjective refraction, and autorefraction. METHODS Four clinicians refracted 16 normal participants aged 23.6 +/- 1.2 years, 69% female with an average spherical equiva...
متن کاملSimultaneous generation of high-efficiency broadband asymmetric anomalous refraction and reflection waves with few-layer anisotropic metasurface
Optical metasurfaces consisting of single-layer nanostructures have immensely promising applications in wavefront control because they can be used to arbitrarily manipulate wave phase, and polarization. However, anomalous refraction and reflection waves have not yet been simultaneously and asymmetrically generated, and the limited efficiency and bandwidth of pre-existing single-layer metasurfac...
متن کاملAccuracy and precision of objective refraction from wavefront aberrations.
We determined the accuracy and precision of 33 objective methods for predicting the results of conventional, sphero-cylindrical refraction from wavefront aberrations in a large population of 200 eyes. Accuracy for predicting defocus (as specified by the population mean error of prediction) varied from -0.50 D to +0.25 D across methods. Precision of these estimates (as specified by 95% limits of...
متن کاملABCD matrix for reflection and refraction of laser beam at tilted concave and convex elliptic paraboloid interfaces and studying laser beam reflection from a tilted concave parabola of revolution
Studying Gaussian beam is a method to investigate laser beam propagation and ABCD matrix is a fast and simple method to simulate Gaussian beam propagation in different mediums. Of the ABCD matrices studied so far, reflection and refraction matrices at various surfaces have attracted a lot of researches. However in previous work the incident beam and the principle axis of surface are in parallel...
متن کاملWavefront Derived Refraction and Full Eye Biometry in Pseudophakic Eyes.
PURPOSE To assess wavefront derived refraction and full eye biometry including ciliary muscle dimension and full eye axial geometry in pseudophakic eyes using spectral domain OCT equipped with a Shack-Hartmann wavefront sensor. METHODS Twenty-eight adult subjects (32 pseudophakic eyes) having recently undergone cataract surgery were enrolled in this study. A custom system combining two optica...
متن کامل